(z+4)*((z^2)-3z+2)*5=5*(z+4)

Simple and best practice solution for (z+4)*((z^2)-3z+2)*5=5*(z+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (z+4)*((z^2)-3z+2)*5=5*(z+4) equation:


Simplifying
(z + 4)((z2) + -3z + 2) * 5 = 5(z + 4)

Reorder the terms:
(4 + z)((z2) + -3z + 2) * 5 = 5(z + 4)
(4 + z)(z2 + -3z + 2) * 5 = 5(z + 4)

Reorder the terms:
(4 + z)(2 + -3z + z2) * 5 = 5(z + 4)

Reorder the terms for easier multiplication:
5(4 + z)(2 + -3z + z2) = 5(z + 4)

Multiply (4 + z) * (2 + -3z + z2)
5(4(2 + -3z + z2) + z(2 + -3z + z2)) = 5(z + 4)
5((2 * 4 + -3z * 4 + z2 * 4) + z(2 + -3z + z2)) = 5(z + 4)
5((8 + -12z + 4z2) + z(2 + -3z + z2)) = 5(z + 4)
5(8 + -12z + 4z2 + (2 * z + -3z * z + z2 * z)) = 5(z + 4)
5(8 + -12z + 4z2 + (2z + -3z2 + z3)) = 5(z + 4)

Reorder the terms:
5(8 + -12z + 2z + 4z2 + -3z2 + z3) = 5(z + 4)

Combine like terms: -12z + 2z = -10z
5(8 + -10z + 4z2 + -3z2 + z3) = 5(z + 4)

Combine like terms: 4z2 + -3z2 = 1z2
5(8 + -10z + 1z2 + z3) = 5(z + 4)
(8 * 5 + -10z * 5 + 1z2 * 5 + z3 * 5) = 5(z + 4)
(40 + -50z + 5z2 + 5z3) = 5(z + 4)

Reorder the terms:
40 + -50z + 5z2 + 5z3 = 5(4 + z)
40 + -50z + 5z2 + 5z3 = (4 * 5 + z * 5)
40 + -50z + 5z2 + 5z3 = (20 + 5z)

Solving
40 + -50z + 5z2 + 5z3 = 20 + 5z

Solving for variable 'z'.

Reorder the terms:
40 + -20 + -50z + -5z + 5z2 + 5z3 = 20 + 5z + -20 + -5z

Combine like terms: 40 + -20 = 20
20 + -50z + -5z + 5z2 + 5z3 = 20 + 5z + -20 + -5z

Combine like terms: -50z + -5z = -55z
20 + -55z + 5z2 + 5z3 = 20 + 5z + -20 + -5z

Reorder the terms:
20 + -55z + 5z2 + 5z3 = 20 + -20 + 5z + -5z

Combine like terms: 20 + -20 = 0
20 + -55z + 5z2 + 5z3 = 0 + 5z + -5z
20 + -55z + 5z2 + 5z3 = 5z + -5z

Combine like terms: 5z + -5z = 0
20 + -55z + 5z2 + 5z3 = 0

Factor out the Greatest Common Factor (GCF), '5'.
5(4 + -11z + z2 + z3) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(4 + -11z + z2 + z3)' equal to zero and attempt to solve: Simplifying 4 + -11z + z2 + z3 = 0 Solving 4 + -11z + z2 + z3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 2b+2d=b+2d*1.414 | | 2.83+2d=b+2d | | 20y^2-12x-6x^2+y^5=0 | | 13200-250S=10560 | | 13200-250S=2 | | x+x-1=61 | | 4x+8=4(x-1) | | x^5+x^3+6x-13=0 | | P=10x-(4.5x+90) | | 6x+15=20-5x | | 3(8m+5)=39 | | 16+4*(7+8)-3= | | 5+5=50 | | 0.2y+8=0.3y-5 | | 0.2y+8=0.2y-5 | | 4x(2+6x)= | | 11x+2y=4y+x | | -9x-7=2x+15 | | 10x+2y=4y+x | | 16x+2y=4y | | 16.3x+2.5y=4y | | u*-4+0.5-4*(5*5)=-35 | | 2(3-y)-4(y+2)+20=0 | | (2x+5)(x-1)=-6 | | x^2+-1x+-45=0 | | Xsquare-17x-25=0 | | x+36=2*x | | (2x+5)(x-1)=6 | | 14*(6-x)=10x | | 4x^80=0 | | 40*(6-x)=20x | | 3(b+2)=3(b-2) |

Equations solver categories